Magnetic fields are produced by moving electric charges and the intrinsic magnetic moments of elementary particles associated with a fundamental quantum property, their spin. In special relativity, electric and magnetic fields are two interrelated aspects of a single object, called the electromagnetic tensor; the split of this tensor into electric and magnetic fields depends on the relative velocity of the observer and charge. In quantum physics, the electromagnetic field is quantized and electromagnetic interactions result from the exchange of photons.
Magnetic fields have had many uses in ancient and modern society. The Earth produces its own magnetic field, which is important in navigation. Rotating magnetic fields are utilized in both electric motors and generators. Magnetic forces give information about the charge carriers in a material through the Hall effect. The interaction of magnetic fields in electric devices such as transformers is studied in the discipline of magnetic circuits.
History
Although magnets and magnetism were known much earlier, the study of the magnetic field began in 1269 when French scholar Petrus Peregrinus de Maricourt mapped out the magnetic field on the surface of a spherical magnet using iron needles.[nb 2] Noting that the resulting field lines crossed at two points he named those points 'poles' in analogy to Earth's poles. Almost three centuries later, William Gilbert of Colchester replicated Petrus Peregrinus' work and was the first to state explicitly that Earth is a magnet.[1] Published in 1600, Gilbert's work, De Magnete, helped to establish magnetism as a science.In 1750, John Michell stated that magnetic poles attract and repel in accordance with an inverse square law.[2] Charles-Augustin de Coulomb experimentally verified this in 1785 and stated explicitly that the North and South poles cannot be separated.[3] Building on this force between poles, Siméon-Denis Poisson (1781–1840) created the first successful model of the magnetic field, which he presented in 1824.[4] In this model, a magnetic H-field is produced by 'magnetic poles' and magnetism is due to small pairs of north/south magnetic poles.
Three discoveries challenged this foundation of magnetism, though. First, in 1819, Hans Christian Oersted discovered that an electric current generates a magnetic field encircling it. Then in 1820, André-Marie Ampère showed that parallel wires having currents in the same direction attract one another. Finally, Jean-Baptiste Biot and Félix Savart discovered the Biot–Savart law in 1820, which correctly predicts the magnetic field around any current-carrying wire.
Extending these experiments, Ampère published his own successful model of magnetism in 1825. In it, he showed the equivalence of electrical currents to magnets[5] and proposed that magnetism is due to perpetually flowing loops of current instead of the dipoles of magnetic charge in Poisson's model.[nb 3] This has the additional benefit of explaining why magnetic charge can not be isolated. Further, Ampère derived both Ampère's force law describing the force between two currents and Ampère's law which, like the Biot–Savart law, correctly described the magnetic field generated by a steady current. Also in this work, Ampère introduced the term electrodynamics to describe the relationship between electricity and magnetism.
In 1831, Michael Faraday discovered electromagnetic induction when he found that a changing magnetic field generates an encircling electric field. He described this phenomenon in what is known as Faraday's law of induction. Later, Franz Ernst Neumann proved that, for a moving conductor in a magnetic field, induction is a consequence of Ampère's force law .[6] In the process he introduced the magnetic vector potential, which was later shown to be equivalent to the underlying mechanism proposed by Faraday.
In 1850, Lord Kelvin, then known as William Thomson, distinguished between two magnetic fields now denoted H and B. The former applied to Poisson's model and the latter to Ampère's model and induction.[7] Further, he derived how H and B relate to each other.
Between 1861 and 1865, James Clerk Maxwell developed and published Maxwell's equations, which explained and united all of classical electricity and magnetism. The first set of these equations was published in a paper entitled On Physical Lines of Force in 1861. These equations were valid although incomplete. He completed Maxwell's set of equations in his later 1865 paper A Dynamical Theory of the Electromagnetic Field and demonstrated the fact that light is an electromagnetic wave. Heinrich Hertz experimentally confirmed this fact in 1887.
Although implicit in Ampère's force law the force due to a magnetic field on a moving electric charge was not correctly and explicitly stated until 1892 by Hendrik Lorentz who theoretically derived it from Maxwell's equations.[8] With this last piece of the puzzle, the classical theory of electrodynamics was essentially complete.
The twentieth century extended electrodynamics to include relativity and quantum mechanics. Albert Einstein, in his paper of 1905 that established relativity, showed that both the electric and magnetic fields are part of the same phenomena viewed from different reference frames. (See moving magnet and conductor problem for details about the thought experiment that eventually helped Albert Einstein to develop special relativity.) Finally, the emergent field of quantum mechanics was merged with electrodynamics to form quantum electrodynamics (QED).
Definitions, units, and measurement
Definition
Alternative names for B[9] |
---|
|
Alternative names for H[9][10] |
|
Often the magnetic field is defined by the force it exerts on a moving charged particle. It is known from experiments in electrostatics that a particle of charge q in an electric field E experiences a force F = qE. However, electrostatics alone is insufficient to explain the force a charged particle experiences in other situations, such as when it moves in the vicinity of a current-carrying wire. In these situations, the force can be correctly accounted for if one introduces a vector B and then writes down a new equation for the force, known as the Lorentz force law:
Alternatively, the magnetic field can be defined in terms of the torque it produces on a magnetic dipole (see magnetic torque on permanent magnets below).[T]he command, "Measure the direction of magnitude of the vector B at such and such a place," calls for the following operations: Take a particle of known charge q. Measure the force on q at rest, to determine E. Then measure the force on the particle when its velocity is v; repeat with v in some other direction. Now find a B that makes [the Lorentz force law] fit all these results—that is the magnetic field at the place in question.
There are two magnetic fields, H and B. In a vacuum they are indistinguishable, differing only by a multiplicative constant that depends on the physical units. Inside a material they are different (see H and B inside and outside of magnetic materials). The term magnetic field is historically reserved for H while using other terms for B. Informally, though, and formally for some recent textbooks mostly in physics, the term 'magnetic field' is used to describe B as well as or in place of H.[nb 4] There are many alternative names for both (see sidebar).
Units
In SI units, B is measured in teslas (symbol: T) and correspondingly ΦB (magnetic flux) is measured in webers (symbol: Wb) so that a flux density of 1 Wb/m2 is 1 tesla. The SI unit of tesla is equivalent to (newton·second)/(coulomb·metre).[nb 5] In Gaussian-cgs units, B is measured in gauss (symbol: G). (The conversion is 1 T = 10,000 G.) The H-field is measured in ampere per metre (A/m) in SI units, and in oersteds (Oe) in cgs units.[12]Measurement
The smallest precision level for a magnetic field measurement[13] is on the order of attoteslas (10−18 tesla); the largest magnetic field produced in a laboratory is 2.8 kT (VNIIEF in Sarov, Russia, 1998).[14] The magnetic field of some astronomical objects such as magnetars are much higher; magnetars range from 0.1 to 100 GT (108 to 1011 T).[15] See orders of magnitude (magnetic field).Devices used to measure the local magnetic field are called magnetometers. Important classes of magnetometers include using a rotating coil, Hall effect magnetometers, NMR magnetometers, SQUID magnetometers, and fluxgate magnetometers. The magnetic fields of distant astronomical objects are measured through their effects on local charged particles. For instance, electrons spiraling around a field line produce synchrotron radiation that is detectable in radio waves.
Magnetic field lines
Mapping the magnetic field of an object is simple in principle. First, measure the strength and direction of the magnetic field at a large number of locations (or at every point in space). Then, mark each location with an arrow (called a vector) pointing in the direction of the local magnetic field with its magnitude proportional to the strength of the magnetic field.An alternative method to map the magnetic field is to 'connect' the arrows to form magnetic field lines. The direction of the magnetic field at any point is parallel to the direction of nearby field lines, and the local density of field lines can be made proportional to its strength.
Magnetic field lines are like the contour lines (constant altitude) on a topographic map in that they represent something continuous, and a different mapping scale would show more or fewer lines. An advantage of using magnetic field lines as a representation is that many laws of magnetism (and electromagnetism) can be stated completely and concisely using simple concepts such as the 'number' of field lines through a surface. These concepts can be quickly 'translated' to their mathematical form. For example, the number of field lines through a given surface is the surface integral of the magnetic field.
Field lines can be used as a qualitative tool to visualize magnetic forces. In ferromagnetic substances like iron and in plasmas, magnetic forces can be understood by imagining that the field lines exert a tension, (like a rubber band) along their length, and a pressure perpendicular to their length on neighboring field lines. 'Unlike' poles of magnets attract because they are linked by many field lines; 'like' poles repel because their field lines do not meet, but run parallel, pushing on each other. The rigorous form of this concept is the electromagnetic stress–energy tensor.
Magnetic field and permanent magnets
Main article: Magnet
Permanent magnets are objects that produce their own persistent magnetic fields. They are made of ferromagnetic materials, such as iron and nickel, that have been magnetized, and they have both a north and a south pole.Magnetic field of permanent magnets
Main articles: Magnetic moment and Two definitions of moment
The magnetic field of permanent magnets can be quite complicated, especially near the magnet. The magnetic field of a small[nb 7] straight magnet is proportional to the magnet's strength (called its magnetic dipole moment m). The equations are non-trivial and also depend on the distance from the magnet and the orientation of the magnet. For simple magnets, m
points in the direction of a line drawn from the south to the north
pole of the magnet. Flipping a bar magnet is equivalent to rotating its m by 180 degrees.The magnetic field of larger magnets can be obtained by modelling them as a collection of a large number of small magnets called dipoles each having their own m. The magnetic field produced by the magnet then is the net magnetic field of these dipoles. And, any net force on the magnet is a result of adding up the forces on the individual dipoles.
There are two competing models for the nature of these dipoles. These two models produce two different magnetic fields, H and B. Outside a material, though, the two are identical (to a multiplicative constant) so that in many cases the distinction can be ignored. This is particularly true for magnetic fields, such as those due to electric currents, that are not generated by magnetic materials.
Magnetic pole model and the H-field
In the magnetic pole model, the elementary magnetic dipole m is formed by two opposite magnetic poles of pole strength qm separated by a very small distance vector d, such that m = qm d.
Magnetic poles cannot exist apart from each other; all magnets have north/south pairs that cannot be separated without creating two magnets each having a north/south pair. The magnetic pole model does not account for magnetism that is produced by electric currents, nor the force that a magnetic field applies to moving electric charges.
Amperian loop model and the B-field
See also: Gauss's law for magnetism
These magnetic dipoles produce a magnetic B-field. One important property of the B-field produced this way is that magnetic B-field lines neither start nor end (mathematically, B is a solenoidal vector field); a field line either extends to infinity or wraps around to form a closed curve.[nb 8] To date no exception to this rule has been found. (See magnetic monopole below.) Magnetic field lines exit a magnet near its north pole and enter near its south pole, but inside the magnet B-field lines continue through the magnet from the south pole back to the north.[nb 9] If a B-field line enters a magnet somewhere it has to leave somewhere else; it is not allowed to have an end point. Magnetic poles, therefore, always come in N and S pairs.
More formally, since all the magnetic field lines that enter any given region must also leave that region, subtracting the 'number'[nb 10] of field lines that enter the region from the number that exit gives identically zero. Mathematically this is equivalent to:
There is also a corresponding differential form of this equation covered in Maxwell's equations below.
Force between magnets
Main article: Force between magnets
The force between two small magnets
is quite complicated and depends on the strength and orientation of
both magnets and the distance and direction of the magnets relative to
each other. The force is particularly sensitive to rotations of the
magnets due to magnetic torque. The force on each magnet depends on its
magnetic moment and the magnetic field[nb 11] of the other.To understand the force between magnets, it is useful to examine the magnetic pole model given above. In this model, the H-field of one magnet pushes and pulls on both poles of a second magnet. If this H-field is the same at both poles of the second magnet then there is no net force on that magnet since the force is opposite for opposite poles. If, however, the magnetic field of the first magnet is nonuniform (such as the H near one of its poles), each pole of the second magnet sees a different field and is subject to a different force. This difference in the two forces moves the magnet in the direction of increasing magnetic field and may also cause a net torque.
This is a specific example of a general rule that magnets are attracted (or repulsed depending on the orientation of the magnet) into regions of higher magnetic field. Any non-uniform magnetic field, whether caused by permanent magnets or electric currents, exerts a force on a small magnet in this way.
The details of the Amperian loop model are different and more complicated but yield the same result: that magnetic dipoles are attracted/repelled into regions of higher magnetic field. Mathematically, the force on a small magnet having a magnetic moment m due to a magnetic field B is:[16]
Magnetic torque on permanent magnets
Main article: Magnetic torque
If two like poles of two separate magnets are brought near each
other, and one of the magnets is allowed to turn, it promptly rotates to
align itself with the first. In this example, the magnetic field of the
stationary magnet creates a magnetic torque on the magnet that is free to rotate. This magnetic torque τ tends to align a magnet's poles with the magnetic field lines. A compass, therefore, turns to align itself with Earth's magnetic field.Magnetic torque is used to drive electric motors. In one simple motor design, a magnet is fixed to a freely rotating shaft and subjected to a magnetic field from an array of electromagnets. By continuously switching the electric current through each of the electromagnets, thereby flipping the polarity of their magnetic fields, like poles are kept next to the rotor; the resultant torque is transferred to the shaft. See Rotating magnetic fields below.
The Amperian loop model also predicts the same magnetic torque. Here, it is the B field interacting with the Amperian current loop through a Lorentz force described below. Again, the results are the same although the models are completely different.
Magnetic field and electric currents
Currents of electric charges both generate a magnetic field and feel a force due to magnetic B-fields.Magnetic field due to moving charges and electric currents
Magnetic field lines form in concentric circles around a cylindrical current-carrying conductor, such as a length of wire. The direction of such a magnetic field can be determined by using the "right hand grip rule" (see figure at right). The strength of the magnetic field decreases with distance from the wire. (For an infinite length wire the strength decreases inversely proportional to the distance.)
The magnetic field generated by a steady current (a constant flow of electric charges, in which charge neither accumulates nor is depleted at any point)[nb 12] is described by the Biot–Savart law:
A slightly more general[18][nb 13] way of relating the current to the B-field is through Ampère's law:
In a modified form that accounts for time varying electric fields, Ampère's law is one of four Maxwell's equations that describe electricity and magnetism.
Force on moving charges and current
Force on a charged particle
Main article: Lorentz force
A charged particle moving in a B-field experiences a sideways
force that is proportional to the strength of the magnetic field, the
component of the velocity that is perpendicular to the magnetic field
and the charge of the particle. This force is known as the Lorentz force, and is given byThe Lorentz force is always perpendicular to both the velocity of the particle and the magnetic field that created it. When a charged particle moves in a static magnetic field, it traces a helical path in which the helix axis is parallel to the magnetic field, and in which the speed of the particle remains constant. Because the magnetic force is always perpendicular to the motion, the magnetic field can do no work on an isolated charge. It can only do work indirectly, via the electric field generated by a changing magnetic field. It is often claimed that the magnetic force can do work to a non-elementary magnetic dipole, or to charged particles whose motion is constrained by other forces, but this is incorrect[19] because the work in those cases is performed by the electric forces of the charges deflected by the magnetic field.
Force on current-carrying wire
Main article: Laplace force
The force on a current carrying wire is similar to that of a moving
charge as expected since a charge carrying wire is a collection of
moving charges. A current-carrying wire feels a force in the presence of
a magnetic field. The Lorentz force on a macroscopic current is often
referred to as the Laplace force. Consider a conductor of length ℓ, cross section A, and charge q due to electric current i. If this conductor is placed in a magnetic field of magnitude B that makes an angle θ with the velocity of charges in the conductor, the force exerted on a single charge q is- ,
- ,
Direction of force
See also: Right-hand rule
The direction of force on a charge or a current can be determined by a mnemonic known as the right-hand rule
(see the figure). Using the right hand and pointing the thumb in the
direction of the moving positive charge or positive current and the
fingers in the direction of the magnetic field the resulting force on
the charge points outwards from the palm. The force on a negatively
charged particle is in the opposite direction. If both the speed and the
charge are reversed then the direction of the force remains the same.
For that reason a magnetic field measurement (by itself) cannot
distinguish whether there is a positive charge moving to the right or a
negative charge moving to the left. (Both of these cases produce the
same current.) On the other hand, a magnetic field combined with an
electric field can distinguish between these, see Hall effect below.An alternative mnemonic to the right hand rule Flemings's left hand rule.
Relation between H and B
The formulas derived for the magnetic field above are correct when dealing with the entire current. A magnetic material placed inside a magnetic field, though, generates its own bound current, which can be a challenge to calculate. (This bound current is due to the sum of atomic sized current loops and the spin of the subatomic particles such as electrons that make up the material.) The H-field as defined above helps factor out this bound current; but to see how, it helps to introduce the concept of magnetization first.Magnetization
Main article: Magnetization
The magnetization vector field M represents how strongly a region of material is magnetized. It is defined as the net magnetic dipole moment
per unit volume of that region. The magnetization of a uniform magnet,
therefore, is a constant in the material equal to its magnetic moment, m, divided by its volume. Since the SI unit of magnetic moment is ampere meter2, the SI unit of magnetization M is ampere per meter, identical to that of the H-field.The magnetization M field of a region points in the direction of the average magnetic dipole moment in that region. Magnetization field lines, therefore, begin near the magnetic south pole and ends near the magnetic north pole. (Magnetization does not exist outside of the magnet.)
In the Amperian loop model, the magnetization is due to combining many tiny Amperian loops to form a resultant current called bound current. This bound current, then, is the source of the magnetic B field due to the magnet. (See Magnetic dipoles below and magnetic poles vs. atomic currents for more information.) Given the definition of the magnetic dipole, the magnetization field follows a similar law to that of Ampere's law:[20]
In the magnetic pole model, magnetization begins at and ends at magnetic poles. If a given region, therefore, has a net positive 'magnetic pole strength' (corresponding to a north pole) then it has more magnetization field lines entering it than leaving it. Mathematically this is equivalent to:
- ,
H-field and magnetic materials
See also: demagnetizing field
The H-field is defined as:- (definition of H in SI units)
Similarly, a surface integral of H over any closed surface is independent of the free currents and picks out the 'magnetic charges' within that closed surface:
The H-field, therefore, can be separated into two[nb 14] independent parts:
The magnetic H-field, therefore, re-factors the bound current in terms of 'magnetic charges'. The H field lines loop only around 'free current' and, unlike the magnetic B field, begins and ends near magnetic poles as well.
Magnetism
Main article: Magnetism
Most materials respond to an applied B-field by producing their own magnetization M and therefore their own B-field. Typically, the response is very weak and exists only when the magnetic field is applied. The term magnetism describes how materials respond on the microscopic level to an applied magnetic field and is used to categorize the magnetic phase of a material. Materials are divided into groups based upon their magnetic behavior:- Diamagnetic materials[23] produce a magnetization that opposes the magnetic field.
- Paramagnetic materials[23] produce a magnetization in the same direction as the applied magnetic field.
- Ferromagnetic materials and the closely related ferrimagnetic materials and antiferromagnetic materials[24][25] can have a magnetization independent of an applied B-field with a complex relationship between the two fields.
- Superconductors (and ferromagnetic superconductors)[26][27] are materials that are characterized by perfect conductivity below a critical temperature and magnetic field. They also are highly magnetic and can be perfect diamagnets below a lower critical magnetic field. Superconductors often have a broad range of temperatures and magnetic fields (the so named mixed state) under which they exhibit a complex hysteretic dependence of M on B.
Energy stored in magnetic fields
Main article: Magnetic energy
See also: Magnetic hysteresis
Energy is needed to generate a magnetic field both to work against
the electric field that a changing magnetic field creates and to change
the magnetization of any material within the magnetic field. For
non-dispersive materials this same energy is released when the magnetic
field is destroyed so that this energy can be modeled as being stored in
the magnetic field.For linear, non-dispersive, materials (such that B = μH where μ is frequency-independent), the energy density is:
In general, the incremental amount of work per unit volume δW needed to cause a small change of magnetic field δB is:
Electromagnetism: the relationship between magnetic and electric fields
Main article: Electromagnetism
Faraday's Law: Electric force due to a changing B-field
Main articles: Faraday's law and Magnetic flux
A changing magnetic field, such as a magnet moving through a conducting coil, generates an electric field (and therefore tends to drive a current in the coil). This is known as Faraday's law and forms the basis of many electrical generators and electric motors.Mathematically, Faraday's law is:
The negative sign is necessary and represents the fact that any current generated by a changing magnetic field in a coil produces a magnetic field that opposes the change in the magnetic field that induced it. This phenomenon is known as Lenz's Law.
This integral formulation of Faraday's law can be converted[nb 15] into a differential form, which applies under slightly different conditions. This form is covered as one of Maxwell's equations below.
Maxwell's correction to Ampère's Law: The magnetic field due to a changing electric field
Main article: Maxwell's correction to Ampère's law
Similar to the way that a changing magnetic field generates an
electric field, a changing electric field generates a magnetic field.
This fact is known as Maxwell's correction to Ampère's law. Maxwell's correction to Ampère's Law bootstrap together with Faraday's law of induction to form electromagnetic waves,
such as light. Thus, a changing electric field generates a changing
magnetic field, which generates a changing electric field again.Maxwell's correction to Ampère law is applied as an additive term to Ampere's law given above. This additive term is proportional to the time rate of change of the electric flux and is similar to Faraday's law above but with a different and positive constant out front. (The electric flux through an area is proportional to the area times the perpendicular part of the electric field.)
This full Ampère law including the correction term is known as the Maxwell–Ampère equation. It is not commonly given in integral form because the effect is so small that it can typically be ignored in most cases where the integral form is used. The Maxwell term is critically important in the creation and propagation of electromagnetic waves. These, though, are usually described using the differential form of this equation given below.
Maxwell's equations
Main article: Maxwell's equations
Like all vector fields, magnetic field has two important mathematical properties that relates it to its sources. (For B the sources
are currents and changing electric fields.) These two properties, along
with the two corresponding properties of the electric field, make up Maxwell's Equations. Maxwell's Equations together with the Lorentz force law form a complete description of classical electrodynamics including both electricity and magnetism.The first property is the divergence of a vector field A, ∇ · A, which represents how A 'flows' outward from a given point. As discussed above, a B-field line never starts or ends at a point but instead forms a complete loop. This is mathematically equivalent to saying that the divergence of B is zero. (Such vector fields are called solenoidal vector fields.) This property is called Gauss's law for magnetism and is equivalent to the statement that there are no isolated magnetic poles or magnetic monopoles. The electric field on the other hand begins and ends at electric charges so that its divergence is non-zero and proportional to the charge density (See Gauss's law).
The second mathematical property is called the curl, such that ∇ × A represents how A curls or 'circulates' around a given point. The result of the curl is called a 'circulation source'. The equations for the curl of B and of E are called the Ampère–Maxwell equation and Faraday's law respectively. They represent the differential forms of the integral equations given above.
The complete set of Maxwell's equations then are:
As discussed above, materials respond to an applied electric E field and an applied magnetic B field by producing their own internal 'bound' charge and current distributions that contribute to E and B but are difficult to calculate. To circumvent this problem, H and D fields are used to re-factor Maxwell's equations in terms of the free current density Jf and free charge density ρf:
Electric and magnetic fields: different aspects of the same phenomenon
Main article: Relativistic electromagnetism
According to the special theory of relativity, the partition of the electromagnetic force into separate electric and magnetic components is not fundamental, but varies with the observational frame of reference:
An electric force perceived by one observer may be perceived by another
(in a different frame of reference) as a magnetic force, or a mixture
of electric and magnetic forces.Formally, special relativity combines the electric and magnetic fields into a rank-2 tensor, called the electromagnetic tensor. Changing reference frames mixes these components. This is analogous to the way that special relativity mixes space and time into spacetime, and mass, momentum and energy into four-momentum.[28]
Magnetic vector potential
Main article: vector potential
In advanced topics such as quantum mechanics and relativity
it is often easier to work with a potential formulation of
electrodynamics rather than in terms of the electric and magnetic
fields. In this representation, the vector potential A, and the scalar potential φ, are defined such that:Maxwell's equations when expressed in terms of the potentials can be cast into a form that agrees with special relativity with little effort.[30] In relativity A together with φ forms the four-potential, analogous to the four-momentum that combines the momentum and energy of a particle. Using the four potential instead of the electromagnetic tensor has the advantage of being much simpler—and it can be easily modified to work with quantum mechanics.
Quantum electrodynamics
See also: Standard Model and quantum electrodynamics
In modern physics, the electromagnetic field is understood to be not a classical field, but rather a quantum field; it is represented not as a vector of three numbers at each point, but as a vector of three quantum operators at each point. The most accurate modern description of the electromagnetic interaction (and much else) is quantum electrodynamics (QED),[31] which is incorporated into a more complete theory known as the Standard Model of particle physics.In QED, the magnitude of the electromagnetic interactions between charged particles (and their antiparticles) is computed using perturbation theory; these rather complex formulas have a remarkable pictorial representation as Feynman diagrams in which virtual photons are exchanged.
Predictions of QED agree with experiments to an extremely high degree of accuracy: currently about 10−12 (and limited by experimental errors); for details see precision tests of QED. This makes QED one of the most accurate physical theories constructed thus far.
All equations in this article are in the classical approximation, which is less accurate than the quantum description mentioned here. However, under most everyday circumstances, the difference between the two theories is negligible.
Important uses and examples of magnetic field
Earth's magnetic field
Main article: Earth's magnetic field
The presence of this field causes a compass, placed anywhere within it, to rotate so that the "north pole" of the magnet in the compass points roughly north, toward Earth's north magnetic pole. This is the traditional definition of the "north pole" of a magnet, although other equivalent definitions are also possible.
One confusion that arises from this definition is that, if Earth itself is considered as a magnet, the south pole of that magnet would be the one nearer the north magnetic pole, and vice-versa. The north magnetic pole is so-named not because of the polarity of the field there but because of its geographical location. The north and south poles of a permanent magnet are so-called because they are "north-seeking" and "south-seeking", respectively.[33][34]
The figure is a sketch of Earth's magnetic field represented by field lines. For most locations, the magnetic field has a significant up/down component in addition to the North/South component. (There is also an East/West component; Earth's magnetic poles do not coincide exactly with Earth's geological pole.) The magnetic field can be visualised as a bar magnet buried deep in Earth's interior.
Earth's magnetic field is not constant—the strength of the field and the location of its poles vary. Moreover, the poles periodically reverse their orientation in a process called geomagnetic reversal. The most recent reversal occurred 780,000 years ago.
Rotating magnetic fields
Main articles: Rotating magnetic field and Alternator
The rotating magnetic field is a key principle in the operation of alternating-current motors.
A permanent magnet in such a field rotates so as to maintain its
alignment with the external field. This effect was conceptualized by Nikola Tesla, and later utilized in his, and others', early AC (alternating-current) electric motors.A rotating magnetic field can be constructed using two orthogonal coils with 90 degrees phase difference in their AC currents. However, in practice such a system would be supplied through a three-wire arrangement with unequal currents.
This inequality would cause serious problems in standardization of the conductor size and so, to overcome it, three-phase systems are used where the three currents are equal in magnitude and have 120 degrees phase difference. Three similar coils having mutual geometrical angles of 120 degrees create the rotating magnetic field in this case. The ability of the three-phase system to create a rotating field, utilized in electric motors, is one of the main reasons why three-phase systems dominate the world's electrical power supply systems.
Because magnets degrade with time, synchronous motors use DC voltage fed rotor windings, which allows the excitation of the machine to be controlled and induction motors use short-circuited rotors (instead of a magnet) following the rotating magnetic field of a multicoiled stator. The short-circuited turns of the rotor develop eddy currents in the rotating field of the stator, and these currents in turn move the rotor by the Lorentz force.
In 1882, Nikola Tesla identified the concept of the rotating magnetic field. In 1885, Galileo Ferraris independently researched the concept. In 1888, Tesla gained U.S. Patent 381,968 for his work. Also in 1888, Ferraris published his research in a paper to the Royal Academy of Sciences in Turin.
Hall effect
Main article: Hall effect
The charge carriers of a current carrying conductor placed in a
transverse magnetic field experience a sideways Lorentz force; this
results in a charge separation in a direction perpendicular to the
current and to the magnetic field. The resultant voltage in that
direction is proportional to the applied magnetic field. This is known
as the Hall effect.The Hall effect is often used to measure the magnitude of a magnetic field. It is used as well to find the sign of the dominant charge carriers in materials such as semiconductors (negative electrons or positive holes).
Magnetic circuits
Main article: Magnetic circuit
An important use of H is in magnetic circuits where B = μH inside a linear material. Here, μ is the magnetic permeability of the material. This result is similar in form to Ohm's law , where J is the current density, σ is the conductance and E is the electric field. Extending this analogy, the counterpart to the macroscopic Ohm's law (I = V⁄R) is:Using this analogy it is straightforward to calculate the magnetic flux of complicated magnetic field geometries, by using all the available techniques of circuit theory.
Magnetic field shape descriptions
- An azimuthal magnetic field is one that runs east-west.
- A meridional magnetic field is one that runs north-south. In the solar dynamo model of the Sun, differential rotation of the solar plasma causes the meridional magnetic field to stretch into an azimuthal magnetic field, a process called the omega-effect. The reverse process is called the alpha-effect.[35]
- A dipole magnetic field is one seen around a bar magnet or around a charged elementary particle with nonzero spin.
- A quadrupole magnetic field is one seen, for example, between the poles of four bar magnets. The field strength grows linearly with the radial distance from its longitudinal axis.
- A solenoidal magnetic field is similar to a dipole magnetic field, except that a solid bar magnet is replaced by a hollow electromagnetic coil magnet.
- A toroidal magnetic field occurs in a doughnut-shaped coil, the electric current spiraling around the tube-like surface, and is found, for example, in a tokamak.
- A poloidal magnetic field is generated by a current flowing in a ring, and is found, for example, in a tokamak.
- A radial magnetic field is one in which the field lines are directed from the center outwards, similar to the spokes in a bicycle wheel. An example can be found in a loudspeaker transducers (driver).[36]
- A helical magnetic field is corkscrew-shaped, and sometimes seen in space plasmas such as the Orion Molecular Cloud.[37]
Magnetic dipoles
Main article: Magnetic dipole
See also: Spin magnetic moment and Micromagnetism
The magnetic field of a magnetic dipole is depicted in the figure.
From outside, the ideal magnetic dipole is identical to that of an ideal
electric dipole of the same strength. Unlike the electric dipole, a
magnetic dipole is properly modeled as a current loop having a current I and an area a. Such a current loop has a magnetic moment of:It is sometimes useful to model the magnetic dipole similar to the electric dipole with two equal but opposite magnetic charges (one south the other north) separated by distance d. This model produces an H-field not a B-field. Such a model is deficient, though, both in that there are no magnetic charges and in that it obscures the link between electricity and magnetism. Further, as discussed above it fails to explain the inherent connection between angular momentum and magnetism.
Magnetic monopole (hypothetical)
Main article: Magnetic monopole
A magnetic monopole is a hypothetical particle (or class of
particles) that has, as its name suggests, only one magnetic pole
(either a north pole or a south pole). In other words, it would possess a
"magnetic charge" analogous to an electric charge. Magnetic field lines
would start or end on magnetic monopoles, so if they exist, they would
give exceptions to the rule that magnetic field lines neither start nor
end.Modern interest in this concept stems from particle theories, notably Grand Unified Theories and superstring theories, that predict either the existence, or the possibility, of magnetic monopoles. These theories and others have inspired extensive efforts to search for monopoles. Despite these efforts, no magnetic monopole has been observed to date.[nb 16]
In recent research, materials known as spin ices can simulate monopoles, but do not contain actual monopoles.[39][40]
See also
General- Magnetohydrodynamics – the study of the dynamics of electrically conducting fluids.
- Magnetic nanoparticles – extremely small magnetic particles that are tens of atoms wide
- Magnetic reconnection – an effect that causes solar flares and auroras.
- Magnetic potential – the vector and scalar potential representation of magnetism.
- SI electromagnetism units – common units used in electromagnetism.
- Orders of magnitude (magnetic field) – list of magnetic field sources and measurement devices from smallest magnetic fields to largest detected.
- Upward continuation
- Magnetic helicity – extent to which a magnetic field wraps around itself.
- Dynamo theory – a proposed mechanism for the creation of the Earth's magnetic field.
- Helmholtz coil – a device for producing a region of nearly uniform magnetic field.
- Magnetic field viewing film – Film used to view the magnetic field of an area.
- Maxwell coil – a device for producing a large volume of an almost constant magnetic field.
- Stellar magnetic field – a discussion of the magnetic field of stars.
- Teltron Tube – device used to display an electron beam and demonstrates effect of electric and magnetic fields on moving charges.
Notes
- ^ Technically, a magnetic field is a pseudo vector; pseudo-vectors, which also include torque and rotational velocity, are similar to vectors except that they remain unchanged when the coordinates are inverted.
- ^ His Epistola Petri Peregrini de Maricourt ad Sygerum de Foucaucourt Militem de Magnete, which is often shortened to Epistola de magnete, is dated 1269 C.E.
- ^ From the outside, the field of a dipole of magnetic charge has the exact same form as that of a current loop when both are sufficiently small. Therefore, the two models differ only for magnetism inside magnetic material.
- ^ Edward Purcell, in Electricity and Magnetism, McGraw-Hill, 1963, writes, Even some modern writers who treat B as the primary field feel obliged to call it the magnetic induction because the name magnetic field was historically preempted by H. This seems clumsy and pedantic. If you go into the laboratory and ask a physicist what causes the pion trajectories in his bubble chamber to curve, he'll probably answer "magnetic field", not "magnetic induction." You will seldom hear a geophysicist refer to the Earth's magnetic induction, or an astrophysicist talk about the magnetic induction of the galaxy. We propose to keep on calling B the magnetic field. As for H, although other names have been invented for it, we shall call it "the field H" or even "the magnetic field H." In a similar vein, M Gerloch (1983). Magnetism and Ligand-field Analysis. Cambridge University Press. p. 110. ISBN 0-521-24939-2. says: "So we may think of both B and H as magnetic fields, but drop the word 'magnetic' from H so as to maintain the distinction ... As Purcell points out, 'it is only the names that give trouble, not the symbols'."
- ^ This can be seen from the magnetic part of the Lorentz force law F = qvBsinθ.
- ^ The use of iron filings to display a field presents something of an exception to this picture; the filings alter the magnetic field so that it is much larger along the "lines" of iron, due to the large permeability of iron relative to air.
- ^ Here 'small' means that the observer is sufficiently far away that it can be treated as being infinitesimally small. 'Larger' magnets need to include more complicated terms in the expression and depend on the entire geometry of the magnet not just m.
- ^ Magnetic field lines may also wrap around and around without closing but also without ending. These more complicated non-closing non-ending magnetic field lines are moot, though, since the magnetic field of objects that produce them are calculated by adding the magnetic fields of 'elementary parts' having magnetic field lines that do form closed curves or extend to infinity.
- ^ To see that this must be true imagine placing a compass inside a magnet. There, the north pole of the compass points toward the north pole of the magnet since magnets stacked on each other point in the same direction.
- ^ As discussed above, magnetic field lines are primarily a conceptual tool used to represent the mathematics behind magnetic fields. The total 'number' of field lines is dependent on how the field lines are drawn. In practice, integral equations such as the one that follows in the main text are used instead.
- ^ Either B or H may be used for the magnetic field outside of the magnet.
- ^ In practice, the Biot–Savart law and other laws of magnetostatics are often used even when a current change in time, as long as it does not change too quickly. It is often used, for instance, for standard household currents, which oscillate sixty times per second.
- ^ The Biot–Savart law contains the additional restriction (boundary condition) that the B-field must go to zero fast enough at infinity. It also depends on the divergence of B being zero, which is always valid. (There are no magnetic charges.)
- ^ A third term is needed for changing electric fields and polarization currents; this displacement current term is covered in Maxwell's equations below.
- ^ A complete expression for Faraday's law of induction in terms of the electric E and magnetic fields can be written as: where ∂Σ(t) is the moving closed path bounding the moving surface Σ(t), and dA is an element of surface area of Σ(t). The first integral calculates the work done moving a charge a distance dℓ based upon the Lorentz force law. In the case where the bounding surface is stationary, the Kelvin–Stokes theorem can be used to show this equation is equivalent to the Maxwell–Faraday equation.
- ^ Two experiments produced candidate events that were initially interpreted as monopoles, but these are now regarded to be inconclusive. For details and references, see magnetic monopole.
Tidak ada komentar:
Posting Komentar